THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Supplementary Exercise 5

1. Let $z_{1}=\frac{2 \sqrt{2}-\sqrt{3}}{2}+\frac{i}{2}$ and $z_{2}=\frac{2 \sqrt{2}-\sqrt{3}}{2}-\frac{i}{2}$ be two points on \mathbb{D}.
(a) Find the equation of P-line passing through z_{1} and z_{2} and express your answer in form of $(x-h)^{2}+(y-k)^{2}=r^{2}$.
(b) Find the distance $d\left(z_{1}, z_{2}\right)$ between z_{1} and z_{2} with respect to the Poincaré metric.
2. Let $A=z_{1}=\frac{1}{3}, B=z_{2}=0$ and $C=z_{3}=\frac{i}{2}$ be three points on \mathbb{D}. Find the P-angle $\angle B A C$.
3. Recall that $\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh x=\frac{e^{x}+e^{-x}}{2}$ and $\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.

Show that
(a) $\cosh ^{2} x-\sinh ^{2} x=1$
(b) $\sinh 2 x=2 \sinh x \cosh x$
(c) $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1=2 \sinh ^{2} x+1$
4. Let $t=\tanh \frac{x}{2}$, show that
(a) $\sinh x=\frac{2 t}{1-t^{2}}$;
(b) $\cosh x=\frac{1+t^{2}}{1-t^{2}}$;
(c) $\tanh x=\frac{2 t}{1+t^{2}}$.
5. Recall the cosine rule for hyperbolic triangle:

$$
\sinh b \sinh c \cos A=\cosh b \cosh c-\cosh a
$$

and the sine rule for hyperbolic triangle:

$$
\frac{\sin A}{\sinh a}=\frac{\sin B}{\sinh b}=\frac{\sin C}{\sinh c}
$$

(a) If $A=30^{\circ}, B=45^{\circ}$ and $a=\ln 4$. Find the value(s) of c.
(b) If $\triangle A B C$ is an equilateral P-triangle where length of each side is $\ln 2$, then find an interior P-angle.

Lecturer's comment:

1. (a) The P-line passing through z_{1} and z_{2} is the intersection of the circle passing through z_{1}, z_{2} and $\frac{1}{\overline{z_{1}}}\left(\right.$ as well as $\left.\frac{1}{\overline{z_{2}}}\right)$ and \mathbb{D}. The required equation is

$$
(x-\sqrt{2})^{2}+y^{2}=1
$$

(b) Let $f(z)=\frac{z-z_{1}}{\overline{z_{1}} z-1}$. Then $f\left(z_{1}\right)=0$ and $f\left(z_{2}\right)=\frac{z_{2}-z_{1}}{\overline{z_{1}} z_{2}-1}$. We have,

$$
\begin{aligned}
d\left(z_{1}, z_{2}\right) & =d\left(0, f\left(z_{2}\right)\right) \\
& =\ln \frac{1+\left|f\left(z_{2}\right)\right|}{1-\left|f\left(z_{2}\right)\right|} \\
& =\ln \frac{1+\sqrt{11-4 \sqrt{6}}}{1-\sqrt{11-4 \sqrt{6}}}
\end{aligned}
$$

2. Let $f(z)=\frac{z-\frac{1}{3}}{\frac{1}{3} z-1}=\frac{3 z-1}{z-3}$. Let A^{\prime}, B^{\prime} and C^{\prime} be the images of A, B and C under $f(z)$ respectively.
Then, $A^{\prime}=f\left(z_{1}\right)=0, B^{\prime}=f\left(z_{2}\right)=\frac{1}{3}$,
$C^{\prime}=f\left(z_{3}\right)=\frac{15}{37}-\frac{16}{37} i=R(\cos \alpha+i \sin \alpha)$, where $R=\frac{\sqrt{481}}{37}$ and $\alpha \approx-46.8^{\circ}$.
Therefore, the P-angle $\angle B A C=\angle B^{\prime} A^{\prime} C^{\prime} \approx 46.8^{\circ}$.
3. (a) $\cosh ^{2} x-\sinh ^{2} x=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}=\frac{e^{2 x}+2+e^{-2 x}}{4}-\frac{e^{2 x}-2+e^{-2 x}}{4}=1$
(b) $2 \sinh x \cosh x=2\left(\frac{e^{x}+e^{-x}}{2}\right)\left(\frac{e^{x}-e^{-x}}{2}\right)=2\left(\frac{e^{2 x}-e^{-2 x}}{4}\right)=\frac{e^{2 x}-e^{-2 x}}{2}=\sinh 2 x$
(c) $\cosh ^{2} x+\sinh ^{2} x=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}+\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}=\frac{e^{2 x}+2+e^{-2 x}}{4}+\frac{e^{2 x}-2+e^{-2 x}}{4}=$ $\frac{e^{2 x}+e^{-2 x}}{2}=\cosh 2 x$
Also, by (a), we have $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=\cosh ^{2} x+\left(\cosh ^{2} x-1\right)=2 \cosh ^{2} x-1$ and $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=\left(\sinh ^{2} x+1\right)+\sinh ^{2} x=2 \sinh ^{2} x+1$.
4. (a) $\frac{2 t}{1-t^{2}}=\frac{2\left(\frac{\sinh \frac{x}{x}}{\cosh \frac{x}{2}}\right)}{1-\left(\frac{\sinh \frac{x}{2}}{\cosh \frac{x}{2}}\right)^{2}}=\frac{2 \sinh \frac{x}{2} \cosh \frac{x}{2}}{\cosh ^{2} \frac{x}{2}-\sinh ^{2} \frac{x}{2}}=\frac{\sinh x}{1}=\sinh x$
(b) $\frac{1+t^{2}}{1-t^{2}}=\frac{1+\left(\frac{\sinh \frac{x}{2}}{\cosh \frac{x}{2}}\right)^{2}}{1-\left(\frac{\sinh \frac{x}{2}}{\cosh \frac{x}{2}}\right)^{2}}=\frac{\cosh ^{2} \frac{x}{2}+\sinh ^{2} \frac{x}{2}}{\cosh ^{2} \frac{x}{2}-\sinh ^{2} \frac{x}{2}}=\frac{\cosh x}{1}=\cosh x$
(c) $\tanh x=\frac{\sinh x}{\cosh x}=\frac{\left(\frac{2 t}{1-t^{2}}\right)}{\left(\frac{1+t^{2}}{1-t^{2}}\right)}=\frac{2 t}{1+t^{2}}$
5. (a) By using sine rule, $\frac{\sin A}{\sinh a}=\frac{\sin B}{\sinh b}$, so $\sinh b=\frac{15 \sqrt{2}}{8}$ and $b=\sinh ^{-1}\left(\frac{15 \sqrt{2}}{8}\right) \approx 1.702$.

Then, by using the cosine rule,

$$
\begin{aligned}
\sinh b \sinh c \cos A & =\cosh b \cosh c-\cosh a \\
\sinh b \cos A\left(\frac{e^{c}-e^{-c}}{2}\right) & =\cosh b\left(\frac{e^{c}+e^{-c}}{2}\right)-\cosh a
\end{aligned}
$$

$(\sinh b \cos A-\cosh b) e^{2 c}+(2 \cosh a) e^{c}-(\sinh b \cos A+\cosh b)=0$
which is a quadratic equation. Therefore, $c \approx 0.397$ or $c \approx 1.859$.
(b) Poincaré disk is a Hilbert plane, so proposition I. 5 (Base angles of an isosceles triangle equal to each other) in Eucild's Elements also holds on Poincaré disk. Therefore, all interior P-angles of an equaliteral P-triangle are the same. Now, we have $a=b=c=\ln 2$. Then,

$$
\begin{aligned}
\cos A & =\frac{\cosh b \cosh c-\cosh a}{\sinh b \sinh c} \\
& =\frac{\cosh ^{2}(\ln 2)-\cosh (\ln 2)}{\sinh ^{2}(\ln 2)} \\
& =\frac{(5 / 4)^{2}-(5 / 4)}{(3 / 4)^{2}} \\
& =\frac{5}{9} \\
A & =\cos ^{-1}\left(\frac{5}{9}\right) \\
& \approx 56.3^{\circ}
\end{aligned}
$$

